Weighted congestion games with separable preferences

نویسنده

  • Igal Milchtaich
چکیده

Players in a congestion game may differ from one another in their intrinsic preferences (e.g., the benefit they get from using a specific resource), their contribution to congestion, or both. In many cases of interest, intrinsic preferences and the negative effect of congestion are (additively or multiplicatively) separable. This paper considers the implications of separability for the existence of pure-strategy Nash equilibrium and the prospects of spontaneous convergence to equilibrium. It is shown that these properties may or may not be guaranteed, depending on the exact nature of player heterogeneity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congestion Games with Player-Specific Constants

We consider a special case of weighted congestion games with playerspecific latency functions where each player uses for each particular resource a fixed (non-decreasing) delay function together with a player-specific constant. For each particular resource, the resource-specific delay function and the playerspecific constant (for that resource) are composed by means of a group operation (such a...

متن کامل

Exact Price of Anarchy for Polynomial Congestion Games

We show exact values for the price of anarchy of weighted and unweighted congestion games with polynomial latency functions. The given values also hold for weighted and unweighted network congestion games.

متن کامل

Pure Nash Equilibria in Player-Specific and Weighted Congestion Games

Unlike standard congestion games, weighted congestion games and congestion games with player-specific delay functions do not necessarily possess pure Nash equilibria. It is known, however, that there exist pure equilibria for both of these variants in the case of singleton congestion games, i. e., if the players’ strategy spaces contain only sets of cardinality one. In this paper, we investigat...

متن کامل

X Weighted Congestion Games: The Price of Anarchy, Universal Worst-Case Examples, and Tightness

We characterize the price of anarchy (POA) in weighted congestion games, as a function of the allowable resource cost functions. Our results provide as thorough an understanding of this quantity as is already known for nonatomic and unweighted congestion games, and take the form of universal (cost function-independent) worst-case examples. One noteworthy byproduct of our proofs is the fact that...

متن کامل

Weighted Congestion Games: Price of Anarchy, Universal Worst-Case Examples, and Tightness

We characterize the price of anarchy in weighted congestion games, as a function of the allowable resource cost functions. Our results provide as thorough an understanding of this quantity as is already known for nonatomic and unweighted congestion games, and take the form of universal (cost function-independent) worst-case examples. One noteworthy byproduct of our proofs is the fact that weigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Games and Economic Behavior

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2009